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Advancements in Theoretical Models of Confined Vortex 
Flowfields

Joshua W. Batterson,* Brian A. Maicke† and Joseph Majdalani‡

University of Tennessee Space Institute, Tullahoma, TN 37388 

In this article, we review some of the theoretical solutions used to describe swirl 
dominated flows in both unidirectional and bidirectional flow orientations.  This short 
survey starts with the Rankine vortex and culminates in the presentation of a compressible 
solution of the bidirectional vortex.  After classifying representative swirl motions as 
external or internal depending on physical boundary conditions, their commonalities are 
identified along with their relevance to either geophysical or industrial applications.  For 
example, all swirl dominated flows comprise a forced vortex core centered around their axis 
of rotation.  The core is due to viscous forces and increases in size with successive increases 
in viscosity.  It is delineated by the point where the swirl velocity reaches its maximum. 
Within the forced vortex core, the tangential velocity is linearly proportional to the radius, a 
characteristic of rigid body rotation.  Outside the forced vortex core, the tangential velocity 
gradually becomes inversely proportional to the radius, thus exhibiting a free vortex tail.  In 
internal flows, this free, irrotational tail is clipped at the boundaries in fulfillment of the no 
slip requirement.  In external flows, it extends out to infinity.  Finally, all swirl dominated 
flows decay axially and their vorticity is confined to either the core vortex or wall boundary 
layers.  These will be described in the context of the bidirectional vortex confined in a 
cylindrical chamber.  What is most prevalent here, and perhaps, what sets the analysis of the 
bidirectional vortex apart lies in its true prediction of essential flow attributes directly from 
first principles.  Unlike other studies that require conjecture or post-diction, for example, in 
estimating or adjusting the maximum swirl velocity and thickness of the core vortex to fit a 
given flow pattern (e.g., the Rankine vortex), these are obtained directly from the asymptotic 
solution of the tangential boundary layer equation for the bidirectional vortex.  We also 
identify the key similarity parameters that control the problem, including the inflow 
parameter, , and the vortex Reynolds number, V. The latter combines the mean flow 
Reynolds number and the product of the swirl number and chamber aspect ratio. In this 
study, the core and sidewall boundary layers are quantified as function of V. The
compressible solution is also obtained assuming a Rayleigh-Janzen expansion in the inflow 
Mach number squared. 

Nomenclature 
a  = chamber radius 

iA  = inlet area 
b  = chamber outlet radius 
l  = chamber aspect ratio, /L a
p  = normalized pressure, 2/( )p U

iQ  = inlet volumetric flow rate 
iQ  = normalized volumetric flow rate, 2 1/( )iQ Ua

Re  = injection Reynolds number, / 1/Ua
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r , z  = normalized radial or axial coordinates, /r a , /z a
S  = swirl number, / iab A
u  = normalized velocity ( ru , zu , u )/U
u  = normalized swirl/spin/tangential velocity, /u U
U  = mean inflow velocity, ( , )u a L
V  = vortex Reynolds number, 1( / ) ( )iQ Re a L l

Greek 
 = normalized outlet radius, /b a
 = rescaled radius of the viscous core 

c  = normalized core radius, /c a
w  = wall tangential boundary layer thickness, /w a
 = perturbation parameter, 1/ /( )Re Ua
 = inflow parameter, 1/(2 ) (2 )iQ l l
 = rescaled wall layer thickness, / a
 = kinematic viscosity, /
 = transformed variable, 2r
 = density 
 = modified swirl number, 1 /( )iQ S

Subscripts 
i  = inlet property 
r  = radial component or partial derivative 
z  = axial component or partial derivative 

 = azimuthal component or partial derivative 
 = overbars denote dimensional variables 

Superscripts 
c  = composite 
i  = inner core 
w  = near sidewall 

I. Introduction
HE flow patterns associated with swirl dominated vortex motions have long been of interest to scientists and 
engineers who have constantly strived to duplicate naturally occurring phenomena and import their performance 

enhancing effects to thermal and mass transport applications.  In reality, swirl patterns vary over widely dissimilar 
length and time scales depending on the physical context, be it geophysical or industrial, external or internal.  In 
meteorology, for example, one is interested in better understanding the formation of tornadoes, waterspouts, dust 
devils, fire whirls, typhoons, hurricanes, or tropical cyclones (see Penner [1]).  In astrophysics, one is interested in 
the helical trajectories of celestial bodies, cosmic jets, galactic pinwheels, and the ever expanding and accelerating 
corkscrew motion of the universe (see Königl [2] and Kirshner [3]). In industrial applications, one attempts to 
trigger swirl using a variety of devices and concepts for the purpose of improving mixing, heating or cooling, 
combustion or separation efficiencies, and chemical filtration or dispensing. Devices used for triggering and 
sustaining helical vortices are constantly developed and optimized. These include swirler blades, curved vanes, 
vortex generators, twisted tape inserts, triangular winglets, propellers, coiled wires, tangential injectors, and other 
vortex trippers, to name a few.  The resulting swirling motions can be further characterized as unidirectional or 
bidirectional, as in the case of cyclonic motion (Reydon and Gauvin [4]).  The latter underlies centrifugal separation 
processes, cyclonic furnaces, and the self-cooling thrust engine developed by Chiaverini et al. [5-7].  While 
multidirectional vortex motions can also be triggered [8], their use is strictly limited due to the difficulties associated 
with their flow stability and control. 
 In studying unidirectional columnar vortices, one is interested in predicting their inception, evolution, stability 
and breakdown (Harvey [9]). The two predominant modes of breakdown are the S- and B-types, named after the 
spiral and bubble shaped patterns that accompany the disruption of columnar vortex filaments. These two disruption 

T
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modes can be sequentially triggered with successive 
increases in the Reynolds and swirl numbers. The 
standard swirl number S  is a dimensionless parameter 
that scales with the ratio of tangential and axial 
momentum forces. In addition to the S- and B-type 
instabilities, other breakdown patterns, such as the 
double helix, have been reported by Sarpkaya [10] and 
others, including Leibovich [11,12].  What is important 
to note here is that vortex breakdown is often 
accompanied by flow expansion and swelling that can be 
effectively modulated to control flames and, therefore, 
improve the combustion efficiency of swirling jets.   
 As described by Lilley [13], swirling jets can be 
markedly beneficial to the operation of industrial 
furnaces, utility boilers, gas turbines, and other swirl 
combustors.  Here too, a distinction can be made between the fuel and oxidizer modes of injection, specifically, 
between coswirling and counterswirling jet configurations.  The latter leads to reduced speed at the fuel-oxidizer 
interjet layer.  The coswirling arrangement is often favored due to its ability to promote higher combustion 
efficiency and reduce sensitivity to changes in operating conditions (Gupta, Lilley and Syred [14]; Durbin and Ballal 
[15]).   
 Interestingly, it is a coswirling, fully reversing, bidirectional flow configuration that lies beneath the operation of 
gaseous and hydro cyclones (Fig. 1); these are ubiquitously used in the petrochemical, mineral, and powder 
processing industries (e.g., in product recovery, scrubbing, and dedusting).  It is also a coswirling arrangement that 
characterizes the concentric pair of coaxial vortices established in the Vortex Combustion Cold-Wall Chamber 
(VCCWC) developed by Chiaverini et al. [5-7] (Fig. 2). This pair consists of an outer, headwall-directed, annular 
vortex and an inner, nozzle-directed, tubular vortex that 
are separated by a rotating, axially non-translating fluid 
interface known as the mantle.  A similar spinning wheel 
separates the updraft from the downdraft in cyclonic tubes 
and furnaces, with the two most prevalent configurations 
being conical and cylindrical (Fig. 1).  
 While flow separation cyclones dispose of two outlets, 
the vortex finder and the spigot (where the heavier mixture 
particles are collected), the bidirectional vortex induced in 
the VCCWC enables the flow to exit through one section 
only, the nozzle.  Another distinguishing feature of the 
VCCWC is the flow being reactive, the outer, annular 
vortex consisting of an oxidizer fluid, and the inner,
tubular vortex consisting of a combustible mixture and 
products; these hot gases remain separated from the outer, 
cool vortex by virtue of the mantle, the interface between 
the chamber’s outer and inner coswirling streams. 
 The outer and inner vortexes established in the 
bidirectional swirl chamber must not be construed for or 
confused with the outer, free vortex and inner, forced 
vortex motions that characterize all swirl dominated flows, 
unidirectional or bidirectional.  In fact, one of the common 
features that are shared by all swirl induced flows is the 
presence of a forced vortex core surrounding their axis of 
rotation (see Lewellen [16] or Vatistas et al. [17-19]).  The 
thickness of the core c  is commensurate with viscous 
intensity and diminishes with successive increases in the 
Reynolds number /Re Ua .  Conversely, the maximum 
swirl velocity which, by definition, occurs at the outer 

Figure 1. Cylindrical and conical cyclone separators. 

Figure 2. Sketch of ORBITEC’s Vortex Combustion 
Cold-Wall Chamber (VCCWC) by Chiaverini et al. [5-7].
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edge of the forced vortex core, increases with the 
Reynolds number.  So while the relationship between the 
tangential velocity u  and radial distance from the axis of 
rotation r  is nearly linear within the forced vortex core, it 
becomes inversely proportional in the outer, free vortex 
region (see Fig. 3). The ensuing free vortex tail continues 
to diminish asymptotically in unbounded flows but is 
rapidly clipped in the presence of solid boundaries (Fig. 
3a).  Due to the continually increased shearing ascribed to 
the forced vortex mechanism as 0r , u  is also 
trimmed at the centerline.   
 Other distinguishing features of swirl dominated flows 
are their axial decay and their vorticity being mostly 
confined to either their core or wall boundary layers.  
Almost paradoxically, the outer region that is adequately 
represented by a free vortex is nearly irrotational.  In the case of the bidirectional vortex, any vorticity in the outer 
region cannot originate from the spinning motion, but rather, from the order of magnitude weaker axial and radial 
velocity fields.  
 A technological vantage point of the VCCWC flowfield is that, by virtue of the inner swirl peaking in the core 
region, fuel residence time is prolonged, mixing is enhanced, and improved performance and thrust generation are 
promoted.  Meanwhile, the outer annular vortex provides a thermal barrier that mitigates heating of the walls, thus 
alleviating thermal cycling and promoting longer life, durability and reduced weight. The increased angular shearing 
rates near the core are thusly put to good use in this propulsive application (Flinn [20] and Chiaverini et al. [5]). 
 Despite the large number of numerical and experimental investigations of swirl dominated flows, a much smaller 
subset has been devoted to the advancement of suitable mathematical models to describe these motions analytically.  
The present article constitutes one such example.  The reason could be attributed to the complexity of equations that 
arise in the presence of a third flowfield element, namely, that of swirl.  Most familiar closed-form solutions are 
either planar or axisymmetric.  In this article, we intend to review some of these solutions, at least the ones most 
relevant to swirl dominated motions, starting with unidirectional flows, and then explore those applicable to 
bidirectional vortexes.  Particular emphasis will be placed on the development of core and sidewall boundary layer 
approximations, and the inevitable treatment of compressible flow behavior. 

II. Classical Unidirectional Solutions 
 Some of the classical solutions for describing unidirectional vortex motions are known as the Rankine, Oseen-
Lamb, and Burgers-Rott vortexes. 

A. Rankine Combined Vortex (1858)  
 One of the earliest theoretical studies of swirl dynamics dates back to 1858 and the work of Rankine [21].  
Accordingly, an external, unidirectional swirling motion can be broken into two parts: a free and a forced vortex 
region.  On the one hand, the forced vortex core exhibits solid body rotation and linearly increases with the radius up 
to a maximum value at cr .  On the other hand, the free vortex characterizes the outer, far field region where the 
swirl velocity diminishes inversely with the radius.  The combination of these two separate flow regimes leads to a 
piecewise representation of the velocity profile.  Often referred to as the Rankine combined vortex, this solution can 
be written as 

( )
( )

( )

c
c

c c
c

r r
u r

u
r

r

 (1) 

where max( )cu u  is the maximum tangential velocity, and c  is the radius of the forced vortex extending to the 
point where the peak velocity is reached (see Fig. 4).  Pursuant to this model, both the magnitude and position of the 
maximum swirl velocity must be known beforehand.  This information can be extracted from experimental or 

viscous
sidewall

viscous
core

a) r

u

b) r

viscous
core

Figure 3. Qualitative behavior of the unidirectional or 
bidirectional swirl velocities in a) internal, confined and b) 
external, unbounded flows. No dimensions are shown 
deliberately. 
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numerical data and then used to adjust the flow pattern as 
desired. Despite its simplicity and reliance on post-diction, 
the Rankine approximation is still being used as an initial 
or baseline model and, despite its neglect of radial and 
axial motions, continues to serve as a rudimentary 
approximation for tornadoes and hurricanes [22].  Because 
the tail of the Rankine vortex is irrotational, all of the 
vorticity is confined to the core region. Furthermore, due 
to the linear dependence of u  on r , the vorticity remains 
constant for cr .  Finally, the essential patching of the 
profiles at the edge of the forced vortex region leads to 
discontinuities in several flowfield variables.  In order to 
present a more compact representation of the Rankine 
vortex, one may use the forced vortex core radius as the 
only available length scale to normalize r , and the 
maximum tangential speed to rescale the velocity.  At the 
outset, one may put  

( 1)
1 ( 1)

r r
u

r
r

                             
c

rr           ( )

c

u r
u

u
 (2) 

This choice of reference length and velocity is ideally suited to model external swirl driven motions. 

B. Oseen-Lamb Vortex (1932) 
 The Oseen-Lamb vortex is a time-dependent line vortex that decays with the passage of time due to the presence 
of shear [23]. It constitutes a simple model of a viscous vortex that can be derived directly from the axisymmetric, 
incompressible, Navier-Stokes equations.  The Oseen-Lamb vortex starts as a potential vortex in which (0,0) 0u
is set to vanish initially along the axis of rotation.  The subsequent radial decay may be captured in terms of the 
viscosity and total circulation .  The latter is taken to be the limiting value of vortex circulation as r .  At the 
outset, one gets   

2 2

2( , ) 1 exp 1 exp
2 4 2

r ru r t
r t r

 (3) 

Being only subject to viscous diffusion, the characteristic radius increases with 2 t .  In fact, the maximum 
swirl velocity occurs at   

1 1 1
2 2 2pln 1, exp 1.1209064 2.2418128c t  (4) 

which is offset by a mere 12% from .  The peak velocity diminishes with successive increases in time or viscosity, 
being inversely proportional to t ; it is given by 

1 1 1
2 2 2

max 1 1 1
2 2 2

1 exp +pln 1, exp
0.050784169 

2pln 1, exp
cu u

t
 (5) 

An alternative representation may be constructed in which the peak velocity is used in lieu of the total circulation; 
this manipulation yields 

1 1 1 2 2
2 2 2

2 21 1 1
2 2 2

pln 1, exp
1 exp 1.566974 1 exp

1 exp +pln 1, expc

u r r
u r r

 (6) 

When comparing theory and experiments, it should be borne in mind that the peak velocity occurs at c  and that the 
more precise length scale for the problem is 1.1209c  [24].  Using this more accurate characteristic length, Eq. 
(6) becomes 

0 1 2 3 4 5
0

0.5

1

max( )
u

u

r/ c

 Rankine (1858)
 Oseen-Lamb (1932)
 Burgers-Rott (1948)
 Sullivan (1959)

Figure 4. Optimally rescaled tangential velocity profiles 
for the Rankine, Oseen-Lamb, Burgers-Rott, and Sullivan 
vortexes. The unified normalization used here enables us 
to capture the strong similarities shared by these profiles. 
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2
1 1 1
2 2 2 21 1 1

2 2 2

1 1 exp +pln 1, exp
1 exp +pln 1, exp

c

c c

u r
u r

2

21.39795255 1 exp 1.25643121c

c

r
r

 (7) 

We hence reproduce Batchelor’s laminar q-vortex solution (1964) which is plotted in Fig. 4 alongside Rankine’s. 
The dimensionless and portable form of the Oseen-Lamb vortex emerges, namely, 

21 expKu r
r

 (8) 

where 

1 1 1
2 2 2

1 1 1
2 2 2

1 1.39795255
1 exp +pln 1, exp

pln 1, exp 1.25643121

K
(9) 

The origin and exact values of the classic constants, K  and , are hereby unraveled. 

C. Burgers-Rott Vortex (1948) 
The Burgers-Rott vortex is another exact solution to the Navier-Stokes equations.  Unlike the Rankine model, it 

disposes of both axial and radial velocity components and can occur naturally given large convective atmospheric 
conditions.  This added feature may be attributed to the suction parameter a  which provides the freedom to model 
suction driven axial flows such as those observed in thunderstorms.  Interestingly, as the suction parameter 
increases, the profile reduces to the Rankine approximation. Its mathematical basis is given by 

2 2

2( ) 1 exp 1 exp
2 2 / 2

r ru r
r a r

 (10) 

where 2 / a .  Clearly, when the radius is normalized by , this profile becomes identical to the Oseen-Lamb 
expression.  Both are superimposed in Fig. 4.  Based on Eq. (5), the peak swirl can be calculated to be 

1 1 1
2 2 2

1 1 1
2 2 2

1 exp +pln 1, exp
0.638172686 0.07181966

2 2 /pln 1, exp
cu

a
 (11) 

It should also be noted that both the Burgers-Rott and Oseen-Lamb vortexes are axisymmetric Gaussian solutions of 
the incompressible Navier-Stokes equations.  Both can be expressed as 

21
4

1;
4

xru G G x e  (12) 

where G x  is the normalized Gaussian function, and ( , ) denote their circulation and core characteristic scale. 
Despite their simplicity, these solutions continue to receive attention. Examples abound and one may cite those by 
Schmid and Rossi [25], Pérez-Saborid et al. [26], Eloy and Le Dizès [27], Alekseenko et al. [24], and Devenport et 
al. [28].  In several experiments, empirical relations are used based on Eq. (10), specifically, 

2 2

1 22 21 exp ; exp
2 z
K r ru u W W

r
 (13) 

where 1, , ,K W  and 2W  are constants that are determined empirically (see Leibovich [11,12], Faler and Leibovich 
[29], and Escudier [30]).  Several other solutions are derived in similar context and described by Long [31], 
Alekseenko et al. [24], and others. 

III. Bidirectional Solutions 
 Solutions that represent bidirectional vortex motions are much less common in the literature.  Here we consider 
those by Sullivan [32], Bloor and Ingham [33], and Vyas and Majdalani [34].   
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A. Sullivan’s Vortex (1959) 
Sullivan’s vortex is an exact viscous solution to the Navier-Stokes equations in an unbounded domain [32].  This 

profile corresponds to a two-cell structure; its inner cell comprises a region where fluid is in constant descent and 
then flows outwardly to rejoin a separate flow converging radially.  This vortex captures physical mechanisms 
exhibiting a distinct inner downflow.  Its integral representation consists of 

2 2

2

( )
0 0

1 1( )
2 2 / 2

d( ) d ; ( ) 3 1
x tf t y

r ru r H H
r H a r H

yH x e t f t t e
y

 (14) 

Note that the radial and axial velocity companions are given by 
2

2

2

2

6( ) 1 exp

( , ) 2 1 3exp

r

r

ru r ar
r

ru r z az

 (15) 

where 2 / a ; a  is the suction strength and  is the viscosity dominated by the eddy viscosity.  At first 
glance, the integral f t  in Eq. (14) may appear to diverge.  However, as the function is integrated, its contribution 
becomes negligible past a radial position corresponding to 10x .  For this reason, we see a strong resemblance in 
the tail region to that of a Rankine vortex.  The peak circumferential velocity will occur when ( ) 0u r  or 

2 22 2 2 /3 3 0, /8

0
2 / exp 3 0, ln( ) d 0; 2.49761606

rr r
cr e t t t t

E
E  (16) 

where 0.57721566E  is Euler’s gamma constant and  is Euler’s gamma function. A rescaled representation of 
Sullivan’s vortex can be achieved using  

2

2
1 0.0567688 =0.0401416

2 /
c

c
c

u H
H a

 (17) 

and so, 
2 2

2
1 2.497616 6.23809

2 2 / 2 c

r ru H H
r H a r H

 (18) 

Subsequent normalization by the maximum velocity yields 
2

2
2

1 0.02989026.23809 6.23809
6.23809

c

c c

u ru H H r
u H r r

 (19) 

One may note the similarities among the foregoing solutions as depicted in Fig. 4.   

B. Bloor-Ingham Vortex (1987) 
 Bloor and Ingham’s vortex [33] is an exact inviscid solution to Euler’s equations in a confined, conical domain.  
Its advancement is intended to be an improvement over the Polhausen technique used earlier by the authors in the 
context of modeling cyclone separators [35].  Although their initial results agreed with Kelsall’s experimental data 
[36], their model was not sensitive to variations in inlet flow conditions.  In seeking a refined model, Bloor and 
Ingham [33] took the mean flow vorticity to be inversely proportional to the distance from their chamber axis and 
introduced some careful assumptions regarding the position and distribution of the inlet source.  This enabled them 
to solve the inviscid Bragg-Hawthorne equation in spherical coordinates.  Using our nomenclature and coordinates 
shown in Fig. 5b, one may anchor the origin of the spherical reference frame at the apex of the cone.  Accordingly, 
Bloor and Ingham’s vortex may be expressed as 

2 2 2 21 1
2 2csc ln( tan ) csc cot sin sin ln( tan ) cos 1

( / 2 )i

R
Q

2 2 21 1
2 2csc ln( tan ) csc cot ln( tan ) csc cot cscr  (20) 
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where the volume flow rate through the cyclone is 2 2( )i o iQ W a a  and the overbar, as usual, denotes dimensional 
quantities.  In Fig. 5, U  is the average swirl velocity at entry and W  is the average axial velocity component 
perpendicular to the lid. Assuming that axial injection from the top occurs at a uniform speed of W  through a 
virtual opening, i oa r a , neither W  nor ia  are known at the outset because “they depend on the way in which 
the three-dimensional flow in the cylindrical section of the cyclone develops into the axially symmetric flow.” 
Unlike external flows in which the radial distance to the peak swirl velocity is taken to be the characteristic length, it 
is convenient to normalize radial and axial coordinates by oa a ; the dimensionless parameter  is given by 

2 2 2 2

2 2
/

(1 / )
o

i i o

a U U W
QW a a

 (21) 

This can be obtained from Eq. (25) in [33].   The spherical solution comprises 
2 1 1

2 22 2 csc ln( tan ) csc cot cos 2 cos ln tan
( / 2 )

R
R

i

uu
Q a

 (22) 

2
2

sin 2( / 2 )i

u
u

Q a
 (23) 

2

2 2 2
1 1 iu Q

u
U r a U

 (24) 

It is valid for 0 1r  and becomes singular along the axis of the cyclone.  When reverting back to cylindrical 
coordinates, one may use 

sin cos

cos sin
r R

z R

u u u
u u u

 (25) 

Note that the tangential velocity is normalized differently from the rest, being referenced to the average tangential 
velocity at entry.  For small divergence angles of the conical chamber, one recovers 

2 2 2ln cscr  (26) 

2( 1) ln 1zu  (27) 

a)  b)

Figure 5. Conical geometry and spherical coordinates used by a) Bloor and Ingham(1987) and b) corresponding 
variables and directional unit vectors used here. 
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C. Vyas-Majdalani Vortex (2003)  
 The Vyas-Majdalani vortex is an exact 
inviscid solution to Euler’s equations 
derived in a confined, cylindrical domain.  
It is obtained using the vorticity-stream 
function approach and a novel technique 
introduced by Vyas, Majdalani and 
Chiaverini [37], and later refined by Vyas 
and Majdalani [34].  This technique is 
extended to spherical geometry by 
Majdalani and Rienstra [38] wherein the 
existence of additional exact solutions is 
demonstrated. The Vyas-Majdalani vortex 
shares similar features to those associated 
with Bloor and Ingham’s, including the inviscid singularity at the origin.  However, it is not limited to the 
assumptions made previously, such as the requirement on the vorticity to remain inversely proportional to the radial 
distance throughout the chamber.  The singularity at the origin is a known characteristic of inviscidly swirling 
motions and adds some reassurance to the result furnished in [34]; the singularity can actually be overcome by 
regularizing the tangential momentum equation before applying matched-asymptotic expansions [39].  Another 
interesting outcome of the inviscid model stems from its ability to predict the existence of multiple mantles in a 
cylindrical cyclone, as shown in a companion paper by Vyas, Majdalani and Chiaverini [8]. What was considered to 
be unlikely at first was confirmed, that same year, through the extensive laboratory and numerical experiments 
carried out independently by Anderson et al. [40].  
 In order to capture the sidewall boundary layers, Vyas and Majdalani have rescaled the tangential momentum 
equation and constructed a composite solution for the swirl velocity.  This is an essential first step for a variety of 
reasons.  Their approximation for u  remains uniformly valid from the core to the sidewall, inclusively [41].  Along 
similar lines, Batterson and Majdalani [42] have rescaled the axial and radial momentum equations and provided an 
improved rotational, incompressible, steady-state solution for the problem at hand.  The no slip condition is thus 
observed in all three directions.  Parallel efforts have been carried out by Maicke and Majdalani [43] for the purpose 
of producing a fully compressible approximation.  Theirs is based on a Rayleigh-Janzen expansion that has proved 
successful in the treatment of compressible Taylor and Culick profiles [44-46].  Such profiles are parameter-free, 
inviscid, rotational, and non-swirling; nonetheless, they are ubiquitously used and shown to be suitable models for 
the internal flowfield in solid rocket motors.  In what follows, some of these developments are briefly described. 

1. Solution for the Inviscid Bidirectional Vortex  
 The mathematical model for the bidirectional vortex family of solutions is illustrated in Fig. 6.  The idealized 
tube has length L  and radius a .  The radius of the inner vortex is b , which coincides with the radius of the exiting 
stream (i.e., the outflow). Initially, r  and z  are used to denote the radial and axial coordinates. The outflow 
fraction of the radius is given by /b a  and the chamber’s aspect ratio is taken to be / .l L a
 As in the case of the Bloor-Ingham vortex, a virtual opening in the sidewall is assumed to exist, thus permitting 
tangential fluid injection at an average speed of U  across an inlet flow area of iA .  As listed in the Nomenclature, 
the inlet volumetric flow rate is i iQ UA .  At this point, all spatial coordinates and velocities are normalized, 
consistently, by the radius a  and the average tangential speed U .  Given inviscid, rotational, incompressible, 
axisymmetric, and steady motion, Euler’s equations reduce to 

0u ;        pu u  (28) 
In the process of reducing the number of dependent variables, one eliminates the pressure and introduces the 
vorticity transport equation, ( ) 0u .  One also introduces the Stokes stream function through the use of 

1 1;    r zu u
r z r r

 (29) 

so continuity is secured. The vorticity stream function will be satisfied, in turn, when a specific connection is found 
between mean flow vorticity and the stream function, specifically, when ( )rF .  Following standard practice, 
we choose 2F C  and substitute into the vorticity equation.  We retrieve the reduced form of the Bragg-
Hawthorne equation, namely, 

0

a

a bbr
_

z
_

L

Figure 6. Sketch of the bidirectional vortex chamber and corresponding 
coordinate system before variables are normalized by the radius a.
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2 2

2 2
1r
r r r z

   or   
2 2

2 2
2 2

1 0C r
r rz r

 (30) 

At this juncture, separation of variables precipitates 
2 21 1

1 2 3 42 2sin cosC z C C Cr C Cr  (31) 

This can be readily solved given a judicious assortment of boundary conditions.  For the problem at hand, we have 

(a) tangential injection or (1, ) 1u l ;
(b) no flow penetration at the headwall or ( ,0) 0zu r ;
(c) no asymmetry with respect to the centerline or (0, ) 0ru z ;
(d) no flow penetration at the sidewall or (1, ) 0ru z ;
(e) mass balance between inflow and outflow or 

0
2 ( , ) do z iQ u r l r r Q .

 Condition (a) can be readily used in conjunction with the conservation principle of angular momentum, given a 
frictionless fluid, to recover the free vortex 1( )u r r . The remaining conditions can be written in terms of the 
Stokes stream function and rearranged to produce  

2

0 0

0   0   / 0
0   0   / 0
1   0   / 0

 d d/

z

r

r

i

z u r
r u z
r u z

z l r Qr

 (32) 

where 2 1/( )i iQ Q Ua  is inversely proportional to the modified swirl number .  The solution to Eq. (31) can 
be retrieved using the four requirements enumerated in Eq. (32).  One recovers 2C m  and 

2 2

2 2

1sin( ) sin( )
2

1sin( ) 2 cos( )r z

zz m r m r
l

m r z m r
r r

u e e e
 (33) 

where m  represents the number of mantles, whereas  and  represent the dimensionless inflow and swirl 
parameters.  These are determined from 

21 2
2 2

i

i

A aS
aL l A

 (34) 

Note that  emerges naturally in our work as a result of proper scaling.  In relation to the standard swirl number S
used by Gupta, Lilley and Syred [14], one gets 2.22144S .  This direct proportionality is, of course, gratifying. 
Another useful result is the theoretical determination of the mantle location which, according to Eq. (33), occurs at  

1
, 2( ) / ,    1, 2,3,...,m nr n m n m  (35) 

where n  represents the nth internal mantle for a given reversal mode number m  [8].  The most prevalent case 
corresponds to 1m  for which the mantle is predicted to occur at the vortex “rms” radius of 1,1 2 / 2 0.707 .
This value is compared in Table 1 to the two cases obtained in a cylindrical cyclone by Smith [47].  Note that our 

idealization is closer to the parameters used in Case II, 
thus explaining the closer agreement in the last column, 
with an average of 0.72.  The combined average 

Table 2  Mantle locations vs. Anderson et al. [40] at UW. 

exp analytic CFD analytic exp CFD exp

0.296 0.354 0.305 0.058 0.009 

0.594 0.612 0.385 0.018 0.209 
0.803 0.791 0.787 0.012 0.016 
0.955 0.935 1.000 0.020 0.045 

Table 1  Mantle locations according to Smith at MIT [47].

Position Case I 
inches

Case II 
inches

Case I 
normalized 

Case II 
normalized 

1 1.99 2.13 0.6633 0.7083 
2 1.89 2.15 0.6300 0.7166 
3 1.88 2.15 0.6266 0.7166 
4 1.85 2.15 0.6166 0.7166 
5 1.79 2.17 0.5966 0.7233 
6 1.79 2.20 0.5966 0.7333 
7 1.75 2.20 0.5833 0.7333 

mean 1.85 2.16 0.6166 0.7211 
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obtained by Smith is 0.67 and may have been influenced 
by the presence of a vortex finder protruding into the 
chamber for the purpose of guiding the outflow.  In the 
case of four mantles, the results so obtained are 
showcased in Table 2 versus experimental and numerical 
measurements obtained by Anderson et al. [40]. It is 
interesting that Eq. (35) agrees more closely with the 
experimental results than the numerical simulations.  
Nonetheless, the set of operating conditions that begets the 
onset of multiple mantles remains a subject of 
investigation and conjecture.   
 Before leaving this subject, it should be noted that, in 
what concerns the swirl number, it is generally defined as 
the ratio of tangential to axial momentum forces.  Its 
scaling can vary from experiment to experiment, 
depending on the geometry and scaling used by the 
authors. For example, Hoekstra, Derksen, and van den 
Akker [48] define their swirl number as 

2(2 )(2 )
4 4

e

i i

d D b a aS
ab A A

 (36) 

where “ ed ” is the diameter of the vortex finder (exit tube), “ ab ” is the tangential inlet area of the cyclone (here, we 
use iA  instead), and “ D ” is the diameter of the cyclone (here, we use 2a ). It can be easily shown that Eq. (36) 
reduces to Eq. (34).  Conversely, for a combustor with swirl vanes, Lilley [13] defines the corresponding swirl 
number to be 

3

2

1 ( / )2 tan
3 1 ( / )

h

h

d d
S

d d
 (37) 

where “ d ” and “ hd ” denote the nozzle diameter and hub diameter of the vanes, and “ ” stands for the vane angle. 

2. Solution for the Tangential Boundary Layers  
 The presence of viscosity at the core and sidewall need to be properly accounted for to capture the forced vortex 
and near-wall decay. The approach we take is to reconsider the tangential momentum equation with viscosity [49]. 
The basic solution of this set is expressible by 

2sin( ) ( )r
r u r

r
u e e 22 cos( ) zz r e ; 1

2 2 2
i iQ A
l aL l

 (38) 

where 1u r  is deficient near 0r  and does not observe the velocity-adherence requirement at the sidewall.  
Both problems stem from the absence of viscosity in the leading order, basic model. To overcome these issues, the 

– momentum equation is reconsidered with second-order viscous terms, namely, 

2
2

1 1 1 ;r
r

ruu u u Uauu Reu
r r Re Re r r rr

 (39) 

where Re  is the mean flow Reynolds number. Being axially independent, Eq. (39) reduces to 
d d 1 d 1( ) ;  
d d d

r
r

u u u
u ru

r r r r r Re
 (40) 

This can be quickly transformed into 
2

2
d sin d 0

2 dd
; ru ; 2r  (41) 

where 3 210 10 .  To make further headway, the boundary layers near the core and sidewall must be identified 
(see Fig. 7). But first, we note that the outer solution may be restored from Eq. (41) by setting 0 .  One recovers 

( )o C , where (o) denotes an outer approximation and C  is a constant. 

Inner, Near Core Approximation 
 In order to bring the swirl velocity to zero along the chamber axis, one must introduce the slow variable 

0

ce
nt

er
lin

e

( )
s

( )
x

outer region

Figure 7. Presence of endpoint boundary layers affecting 
the tangential velocity and causing it to vanish both at the 
centerline (thus giving rise to a forced vortex) and the 
sidewall (in fulfillment of no slip). 
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( )
s  (42) 

A balance between diffusion and convection near the core leads to the distinguished limit of ~ / . The core 
boundary layer equation becomes exceedingly simple, namely, 

2 ( ) ( )

2
d 1 d 0

2 dd

i i

ss
;           

( )

( ) ( )

0,  0,  0

1,  ,  

i

i o

r s
r s

 (43) 

where the superscript stands for the inner, near-core approximation. Using a series of the form ( ) ( ) ( )
0 1

i i i

one retrieves 
1
2( )

0 ( 1)si C e  (44) 
Then using Prandtl’s matching principle, we deduce 0C C . The last constant may be obtained from the 
downstream condition of a tangentially injected fluid.  A composite inner solution is hence determined, 

21
4

1
4

( ) 1

1

Vr
ci

V

e
e

     or     
21

4

1
4

( ) 1 1

1

Vr
ci

V

eu
r e

 (45) 

where V  is the vortex Reynolds number that appears in the problem.  This parameter combines the viscous 
Reynolds number, the swirl number and the geometric aspect ratio: 

2 1 iQRe aV
l L L

 (46) 

It may be interesting to note the qualitative resemblance between Eq. (46) and the vortex Reynolds number 
encountered in two cell swirling motion such as Sullivan’s vortex [32]; Sullivan’s control parameter is found to be 
proportional to the flow circulation at infinity and the reciprocal of the kinematic viscosity.   

The composite inner approximation is identical to the solution presented by Vyas, Majdalani and Chiaverini [39] 
Note that as 0 , V , and ( ) 1ciu r ; forthwith, the swirl velocity associated with a free vortex is restored. 
Conversely, as 0r  at fixed , one can expand Eq. (45) into 

1
4

2 2 41 1
( ) 38 96(1 )

( )
44(1 )

ci
V

rV Vr V r rVu O r
e

 (47) 

This expansion unravels the forced vortex relation, ( ) ~ciu r , where 1
4 V ,  being the angular speed of the 

core that is rotating as a rigid body about the chamber axis. 

Inner, Sidewall Approximation 
 In similar fashion, the sidewall boundary layer may be captured after rescaling the thin region near the wall via 

( )
x  (48) 

Here  refers to the thickness of the wall tangential boundary layer. Using (w) to denote a wall solution, Eq. (41) 
may be rearranged, expanded, and reduced to 

2 ( ) ( )
2

2
d 1 1 d1 0

2 6 dd

w w

xx
;           

( )

( ) ( )

1,  0,  0

0,  ,  

w

w ci

r x
r x

 (49) 

where /  is taken to be the distinguished limit. Corresponding boundary conditions consist of the no slip at 
the wall and blending with the composite inner solution in the outer domain. Following similar ideas of matching, 
the sidewall approximation may be obtained, 

2 21 1
4 6

21 1
4 6

( 1) (1 )
( )

( 1)

1( )
1

V r
w

V

er
e

     or     
2 21 1

4 6

21 1
4 6

( 1) (1 )
( )

( 1)

1 1

1

V r
w

V

eu
r e

 (50) 

The validity of Eq. (50) is restricted to the region adjacent to the wall.  As 0r , the outer solution is regained.   

Composite, Uniformly Valid Approximation 
 Using the classic ideas of composite expansions, a uniformly valid solution may be arrived at from the 
combination of wall and composite inner solutions.  The result is 
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2 22 1 11
4 64 2 22 1 11

4 64
1 21 1
4 4 6

21
4 21

4
1
4

( 1) (1 )
( 1) (1 )

( 1)

1 1 1 11 1 ; 0
1 1

1 1 1 1 ; (tangential injection at entry)
1

V rVr
V rVr

V V

Vr
Vr

V

e e e e z l
r re e

u
e e z l

r re

 (51) 

The swirl velocity is hence made non-singular and adjusted to satisfy the no slip condition at the wall.  Its behavior 
is illustrated in Figs. 8 and 9.  Other important flow ingredients are summarized in Table 3. 
 As shown in Fig. 8, the tangential component of the velocity starts from zero at the wall and then increases 
rapidly to merge with the outer flowfield within a characteristic distance w . It continues to increase until reaching a 
maximum value that delimits the envelope inside of which viscous forces become dominant. After passing through 
this maximum max( )u , the swirl velocity depreciates, within a radius c , until it reaches zero at the chamber axis.  
The plot of u  in Fig. 8 is given at three vortex Reynolds numbers of 210 , 310 ,  and 410 .
 As shown in Fig. 8a and its inset, the radius of the core vortex c  expands with successive increases in viscosity. 
It is largest at the smallest value of V . As the vortex Reynolds number is increased to 410 ,  the point of maximum 
swirl draws nearer to the core. This behavior is accompanied by an increase in the magnitude of max( )u . With 
further increases in the vortex Reynolds number, it is clear that u  approaches the inviscid limit.  
 In the close proximity of the sidewall, Fig. 8b illustrates the rapid damping that the swirl velocity undergoes. The 
wall tangential boundary layer w  exhibits a similar dependence on viscosity.  Its thickness increases when the 
vortex Reynolds number is decreased.  The patterns of the rapidly decaying curves appear to be in agreement with 
experimental measurements acquired by Hu et al. [52]. They also agree with both CFD and LDV predictions 
obtained by Hoekstra, Derksen and Van den Akker [48].   
 In the interest of validating the shape predicted by the present solution, comparisons are made in Fig. 9 using 
numerical simulations and experimental measurements obtained, respectively, from Murray et al. [50], and Rom, 
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Figure 8. Swirl velocity versus /( )iV Q L  illustrating the sensitivity of the boundary layer thickness near a) the core 
and b) the sidewall. 
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Figure 9. Analytical swirl velocity ( )cu  versus computational and experimental predictions from Murray et al. [50] and 
Rom, Anderson and Chiaverini [51].  Our solutions are shown at two vortex Reynolds numbers corresponding to a) 350, 
and b) 650.  
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Anderson and Chiaverini (cf. Fig. 18) [51].  The numerical data is generated using KIVA, a three-dimensional, 
finite-volume solver that can handle multiphase, multicomponent, chemically reacting flows. The code is based on a 
staggered, Arbitrary Lagrangian Eulerian (ALE) technique.  The measurements are acquired through Particle Image 
Velocimetry (PIV) and an experimental apparatus that is elaborately described by Anderson et al. [40,51].  In both 
parts of Fig. 9, numerical and analytical shape predictions show substantial agreement at the estimated vortex 
Reynolds numbers; furthermore, they are corroborated by actual experimental measurements, especially in the outer 
and sidewall regions.   
 As the core is approached, the experimental velocity tapers off, falling short of the maximum theoretical values 
projected by computations and asymptotics. The reduced fidelity of the PIV technique in the vicinity of the forced 
vortex region is not surprising; it may be attributed to the intensification of viscous drag on seeded particles.  Similar 
trends are depicted in the RSM data and rich LDV measurements taken recently by Hu et al. (cf. Fig. 8 in [52]).  
Their LDV data acquisition system also deteriorates in the core neighborhood.  Several arguments could be offered 
as plausible explanations.  While approaching cr  from the outer domain, particle drag increases and the swirl 
velocity becomes quite high relative to the radial velocity; it becomes difficult for the particles to follow the flow or 
for the experimenter to achieve good seeding concentrations. To increase the precision of measurements, it is 
essential to use correlated particle pairs from two pulsed laser planes.   

D. Batterson-Majdalani Vortex (2007)  
 The purpose of this solution is to achieve an approximation for the bidirectional vortex that satisfies no slip in all 
of its components [42].  It will seek to capture the boundary layers needed to bring both the axial and radial 
velocities to smoothly vanish along the sidewall.  The required analysis is sketched below. 

1. Solution for the Axial Boundary Layer 
 The pertinent boundary layer equation can be derived according to Prandtl’s order of magnitude reduction 
applied to the axisymmetric Navier-Stokes momentum equation [53]: 

2

2
1z z z z

r z
u u u upu u
r z z r rr

 (52) 

This equation is subject to two conditions 

( )

0

1, 0

lim ,
z

o
z zr

u z

u r z u
 (53) 

where ( )o
zu  represents the outer form that must be recovered by ,zu r z  away from the walls.  In the process, we 

extract the pressure gradient from the inviscid solution, 2 2/ 4p z z .  Moreover, an immediate simplification 
may be made as suggested by Conlisk [54].  By specifically stating that / /r z , we are able to neglect 
derivatives with respect to the axial direction.  This enables us to convert the partial differential equation (PDE) into 
an ordinary differential equation (ODE) that is valid at any fixed axial position.  Lastly, the idea of successive 
approximations may be employed by injecting the radial outer solution into the boundary layer equation. 
 Applying these assumptions to Eq. (52) leads to the compacted form 

2 2 2d d1 d sin 4
d d d

z zu ur r z
r r r r r

 (54) 

A useful variable transformation found by Vyas and Majdalani [55] may be employed.  We thus define 2r .
Upon substitution into Eq. (54) we retrieve 

2 2

2

d d d1 sin
d 2 dd

z z zu u u z  (55) 

In order to more easily confront the rapid changes near the wall, we seek a scaling transformation appropriate of the 
boundary layer.  We know that as 1;r .  We therefore select the stretched coordinate 

;s s  (56) 

This transformation leads to 
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2 2

2 2

sind d d 4
d 2 dd

z z zsu u u z
s s s s ss

 (57) 

Expanding the sine term leaves us with 
2 2 2

2 2

d d d 41
d 2 6 dd

z z zu u u z
s s s ss

 (58) 

As usual, the distinguished limit is found to be / . Upon substitution back into Eq. (58) we asymptotically 
reduce the equation to its final form 

2 2

2

d d1 1 0
2 6 dd

z zu u
ss

 (59) 

with the translated boundary conditions 

( )

0, 0

lim ,
z

o
z zs

u z

u s z u
 (60) 

This equation captures the axial velocity profile in the boundary layer at any given axial position.  Forthwith, Eq. 
(59) is satisfied by the function 

2
( ) 11 exp 1

2 6
o

z zu u s  (61) 

The outer approximation at any point is given by the inviscid solution ( ) 22 coso
zu z r .  Rewriting Eq. (61) in 

terms of the unscaled variables renders the final solution. One gets 
2 21 1

4 6( 1) (1 )2, 2 cos 1 V r
zu r z z r e  (62) 

where 2 /V  is the same vortex Reynolds number expressed in Eq. (46).  We also note the symmetry between 
the axial boundary layer correction and that realized for the swirl velocity at the wall. 

2. Solution for the Radial Boundary Layer 
 Corrections of this nature are typically disregarded if the inviscid velocity vanishes at the wall; however 
viscosity has a tempering effect on the curvature of the radial profile that will be investigated here.  The reduction of 
the Navier-Stokes equations is more subtle because the viscous correction could be considered to be secondary.  
While Prandtl’s method still applies, one must retain terms to the second order lest a meaningless outcome is 
engendered.  The process requires starting with  

22

2 2
1r r r r r

r z
uu u u u u pu u

r r r r z rr r
 (63) 

which is subject to  

( )

0

1 0

lim
r

o
r rr

u

u r u
 (64) 

By assuming that radial changes are more significant than axial ones, we eliminate all axial derivatives and take the 
pressure gradient calculated from the inviscid solution obtained in [34], 

2
2 2 2 2

3 3
1sin 1 2 cotp r r r

r r r
 (65) 

We recognize that this term becomes 2O  near the wall due to some cancellation with the 2 /u r  term.  Then just 
as before, we inject the inviscid solution into the boundary layer equation.  Rewriting Eq. (63) gives 

2
2 2 2 2

3 3

d d1 d sin sin sin
d d d

r ru ur r r O r
r r r r rr r

 (66) 

The transformation 2r  follows.  With careful substitution and factorization of Eq. (66), we get 
2 2

2 2
2 5/ 2 3

d d d1 sin sin sin
d 2 dd 4

r r ru u u O r
r

 (67) 
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The sidewall variable transformation /s  can thus be applied along with the sine expansion; the radial 
equation becomes 

2 2 2

2 2 5/ 2

d d d
sin 1 0

d 2 6 dd 4
r r ru u u

s
s s ss s

 (68) 

where /  re-emerges.  Reinserting the distinguished limit into Eq. (68) we can reveal the following form 
2 2

2

d d1 1 0
2 6 dd

r ru u
ss

    or      
2 2

2

d d
1 0

6 dd
r r

ss
 (69) 

Note that we introduce 2/ sin( )r rru r . Boundary conditions follow, namely, 

( )

0 0

lim
r

o
r rs

u

u s u
    or      (0)

0 0

lim
r

r rs
s

 (70) 

The solution is readily found to be 
2 21 1

2 6( 1) (1 )2, sin 1 V r
ru r z r e

r
 (71) 

The new solutions resolve the viscous corrections near the wall.  Figure 10a illustrates the inviscid solution with 
respect to given axial positions while Fig. 10b illustrates the strong dependence of the boundary layer on the vortex 
Reynolds number.  Since both corrections possess the same basic form, we can conclude that the boundary layer 
thickness will be similar in both directions.  Graphically, the axial dependence on the vortex Reynolds number 
appears to be more significant than in the radial case.  In both coordinate directions, as V  the inviscid solution 
is restored.  Inversely, as 0V  the solution vanishes, as in the case of zero mean flow velocity. 
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E. Maicke-Majdalani Compressible Vortex (2007)  
 The purpose of this solution is to achieve an approximation for the bidirectional vortex under compressible, 
isentropic conditions. 

1. Motivation 
From flows over blunt bodies to airfoil design, the study of compressible motions has almost always been carried 

out on external flows.  The result of this bias is that compressible formulations of many internal flow models are 
neglected.  Recent work attempts to address this discrepancy but there is still much to be realized before our 
understanding of internal compressible flows becomes as extensive as the work achieved on external flows.  There 
are many reasons for this incongruity.  First, many internal flows can be adequately represented by incompressible 
models.  Many flows contained in small spaces do not reach conditions where compressibility effects become a 
concern.  Secondly, compressible formulations of internal flowfields can be difficult to solve analytically for even 
the most basic representations.  When one looks at the more interesting and realistic flowfields, analytical solutions 
are even harder to come by.  As a result, most of the recent work on internal, compressible flows are directed toward 
numerical studies using either canned or custom CFD packages.  While these studies can be useful for specific 
flows, they do not aid in advancing our understanding of more general flowfields; evidently, their usefulness and 
predictive capabilities are limited.  Finally, the analytical tools that make the solution of these compressible 
flowfields possible are a relatively recent innovation [44-46].  While perturbation methods have been available for 
some time, it was not until recently that the methods have been extended to complex engineering problems.  
Combining perturbation methods with the advent of computer algebra systems leads to insightful solutions 
previously unreachable. 

Since the challenges in acquiring a closed form compressible solution are many, it is important to understand 
why such solutions are valuable.  The first and most fundamental reason is that analytical approximations to these 
problems enhance our understanding of not only the model being studied, but of fluid dynamics as a whole.  
Particular solutions often lead to generalized techniques that can be successfully applied to any number of 
previously abandoned problems.  Analytical models are also a helpful supplement to the computational modeling 
discipline.  With the emergence of new and more complicated numerical codes, a fundamental baseline is required 
to verify their efficacy.  Analytical models can provide this baseline, especially in situations where experimental 
testing of a model is costly or impractical, as is often the case in early rocket motor development.  In issues more 
specific to rocket flow analysis, a compressible model serves as an accurate foundation for stability models, which 
previously have only considered compressibility in their unsteady components [56-59]. 

In this paper, we formulate the model for the compressible bidirectional vortex, using a Rayleigh-Janzen 
perturbation expansion.  The solution methodology is outlined and challenges that arise during the solution process 
are addressed.  Some preliminary results are presented and an outline for future work is provided. 

2. Formulation 
In order to extract the compressible analog to the inviscid bidirectional vortex, we employ a Rayleigh-Janzen 

perturbation in the variables of interest and then expand the governing equations.  The result of this technique is that 
the leading order equations recover the incompressible solution for the flowfield, previously obtained by Vyas and 
Majdalani [34].  To find the compressible corrections, the first order equations must be solved.  These are presented 
here in the order by which they are considered: 

(1) (1)
(0) (1) (1) (0) pU U   (72) 

2 (1) (1) (1) (0) (0) (1)D r r   (73) 
2(0) (0) (1)(0) (0) (0) (1) (1) (0)(2)

(1) (0) (0) (1)
0

( )1 2r r r r r r
z z z

u u uu u u u u up u u u u
r r z r r z z r

 (74) 

(0) (0) (0) (1) (1) (0)(2)
(1) (0) (0) (0) (1)( )1 z z z z z z

z r r r
u u u u u up u u u u

z z r z r r
 (75) 

(2) 2(2) (1)
2

1
2

p p   (76) 
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2(2) (2) (1)
2

1 1
2

T p p   (77) 

(1) (1) (0) (0)
(0) (1) 0r r

u u u u
u u

r r r r
  (78) 

The compressible treatment follows the following strategy. First the vorticity transport equation is used to determine 
a relationship between the first order vorticity and other previously determined variables.  Once this quantity is 
obtained it is substituted back into the vorticity equation, which allows one to solve for the first order stream 
function, determining both the radial and axial compressible velocities.  The radial and axial momentum equations 
are then solved to determine the first order pressure correction, followed by substitution into the isentropic relations 
to fully determine the thermodynamic properties of the flow.  The final equation to be solved is the tangential 
momentum equation, which provides us with the compressible correction to the rotational velocity.  At first glance, 
the solution procedure seems well defined; however there are obstacles that are not readily apparent until the 
solution is attempted. 

3. Obstacles 
The compressible bidirectional vortex presents a unique set of challenges.  In the first iteration of the solution 

process, we attempt to determine the inviscid, compressible solution to this complex flowfield.  Normally, this 
expansion is straightforward, and can yield a closed form solution with very good accuracy.  However, in the 
bidirectional vortex, there are a number of factors that must be addressed before the Rayleigh-Janzen expansion can 
be applied. 

The first challenge manifests itself in one of the key boundary conditions, namely, the no radial flow across the 
centerline.  This boundary condition is a result of one of the key simplifications, axisymmetry.  At the leading order, 
this boundary condition is satisfied easily via  

(0)
(0) 1(0, ) 0ru z

r z
 (79) 

This equation is easily satisfied and leads to the inviscid stream function solution presented previously.  However, 
for the first order correction in the Mach number squared, the boundary condition is more involved.  The equation of 
interest becomes  

(1) (0) (1)
(1) 1(0 ) 0ru z

r z r z
 (80) 

The problem with evaluating this expression stems from the first term on the right-hand-side.  The density term, 
solved after the leading order stream function, is singular at the origin.  Because this term is infinite at the origin, 
this boundary condition cannot be satisfied at the first order, making an accurate compressible correction virtually 
impossible to achieve.  The key is to regularize the problem and include viscosity, at least at the core. 

4. Weakly viscous approach 
To overcome the singularity at the centerline, we use a modified formulation of the inviscid model.  Since the 

majority of the flowfield can be modeled accurately as inviscid, we apply a viscous correction at the core of the 
flow, where the fluid flow behaves singularly.  This viscous core correction eliminates the problem of satisfying the 
no radial flow across the centerline condition, as well as modifying the tangential momentum equation such that the 
swirl velocity is no longer incompressible.  The result of this is that the tangential momentum equations must be 
modified.  The leading order tangential momentum equation becomes 

(0)2 (0) (0)

2
d d 0

dd 2
ru

 (81) 

Similarly, the first order representation yields 
(0) (1) (1) (0)2 (1) (1) (0) (0)

2
d d d d 0

d d dd 2 2 2
r r ru u u

 (82) 

As before, we take ru , 2r , and 1/ Re .  Unsurprisingly the leading order equation recovers the 
incompressible solution of Vyas and Majdalani [60].  This solution is determined by first suppressing the viscous 
term to find the outer solution, and then introducing an inner scale to capture the viscous behavior near the core.  
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Because the viscosity change only modifies the tangential momentum equation, the solution methodology outlined 
previously will still apply.  The only change to the procedure is that the composite solution is utilized in lieu of the 
free vortex. 
 Armed with this new composite swirl velocity, we can now return to and solve Eqs. (72)-(77) for the first order 
corrections.  The substitution of this swirl velocity with the core correction enables us to revisit Eq. (73) in 
particular.  Because of the viscous core correction, the density is no longer singular at the origin; the previously 
troublesome boundary condition, Eq. (80) can now be successfully applied to find the compressible stream function 
correction.  The full first order stream function is a cumbersome expression.  However, consistent with perturbation 
methods, there are some terms in the relation that are smaller than the order of accuracy of the expansion.  These 
terms may be truncated, and the remaining expression will still capture the behavior of the first order correction.  
The resulting expression is 
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2 3 3
2 2 2 / 2 / 4 2

2 2
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where 2csc / 2iB Q l , is the outlet radius, E  is the Euler gamma constant, /iV Q L ,
2 94 4 12 ln 2 ln1024 4lnB VE   (84) 
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and
1 1 22 42 tan tan cscV

V V
  (86) 

All of which are constants for a given chamber.  While this solution is relatively compact in the simplified form, 
it is difficult to carry all of the information forward.  The compressible stream function only determines the 
compressible axial and radial velocities.  Knowledge of these terms is required to solve Eq. (82), which determines 
the swirl velocity.  It is possible to use the full expression for the stream function to determine the swirl velocity, but 
the resulting solution contains an integral formulation.  There are a number of other methods that can be employed 
to achieve a solution.  The first method is to neglect the (1)

ru  velocity term in Eq. (82).  Since the swirl velocity 
dominates the compressible terms, neglecting this term results in a compact equation that provides an approximate 
solution for the compressible swirl velocity.  The second method is to employ a further reduced stream function, 
carrying forward only the most dominant terms.  This method offers a slightly more accurate expression for the swirl 
velocity, albeit at the cost of increased complexity. 

There are a number of additional challenges that have yet to be met.  A more comprehensive model for the 
bidirectional vortex is our goal.  Uniting the work done in determining the viscous boundary layers along the walls 
and corners of the chamber to the compressible solution will provide an even more accurate platform for stability 
prediction and analysis.  The relaxation of the limiting assumptions also constitutes a vital area of interest for further 
studies.  Finding a vortex model that is not dependent on the isentropic flow condition is an intriguing area that must 
be undertaken in the process of paving the way for a successful thermal analysis of the combustion chamber.  A 
solution that does not neglect the axial variations of the swirl velocity is also of particular interest.  Having an 
analytical comparison between the original solution and the one with axial variations would be very helpful. 
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Locus of the Mantle (Locus of the Mantle (AIAA 2003-5052))
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Experimental Confirmation by J. L. Smith (MIT)Experimental Confirmation by J. L. Smith (MIT)

 
Site L z−  [in] r  [in] Radial Fraction, *β  

1 0.0 2.13 0.7083 
2 1.5 2.15 0.7166 
3 3.0 2.15 0.7166 
4 4.5 2.15 0.7166 
5 6.0 2.17 0.7233 
6 7.5 2.20 0.7333 
7 9.0 2.20 0.7333 

Mean  2.16 0.7211 



Isotherms Under Reactive Flow ConditionsIsotherms Under Reactive Flow Conditions
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Multiple Solutions/MultiMultiple Solutions/Multi--Directional Flows (AIAA 2003Directional Flows (AIAA 2003--5054)5054)
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Matrix of Mantle LocationsMatrix of Mantle Locations

1
, 2( ) / ,    1, 2,3,...,m n n m n mβ = − =

m  1n =  2n =  3n =  4n =  

1 1,1 1/ 2β =     

2  2,1 1/ 2β =  2,2 3 / 2β =   

3  3,1 1/ 6β =  3,2 1/ 2β =  3,3 5 / 6β =   

4  4,1 2 / 4β = 4,2 6 / 4β = 4,3 10 / 4β = 4,4 14 / 4β =

 
Experimental 
image mantle 
locations (r/a) 

Theoretical 4 
mode mantle 
locations (r/a) 

FLUENT  
Mantle 
locations (r/a) 

Flow 
direction 

p
0.594 0.803 0.612 0.791 0.385 0.787 down 
0.803 0.955 0.791 0.935 0.787 1.00 up 

Experimental Verification (Anderson AIAA 2003Experimental Verification (Anderson AIAA 2003--4474)4474)



Singularity at the CenterSingularity at the Center--Axis (Axis (AIAA 2003-5052))
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Viscous Tangential Momentum Equation (AIAA 2006Viscous Tangential Momentum Equation (AIAA 2006--4888)4888)
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Net Solution (AIAA 2006Net Solution (AIAA 2006--4888)4888)
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Corrected Swirl VelocityCorrected Swirl Velocity
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Classification of Vortex/Swirl Dominated FlowsClassification of Vortex/Swirl Dominated Flows

Internal/Confined
Industrial

External/Unbounded
Geophysical

Unidirectional

Free Vortex Tail
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Featured Results (AIAA 2006Featured Results (AIAA 2006--4888)4888)
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Other Key FindingsOther Key Findings
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Sidewall Boundary Layer Corrections in the Axial DirectionSidewall Boundary Layer Corrections in the Axial Direction
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Corrected Axial Velocity ProfileCorrected Axial Velocity Profile
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Dependence on the Vortex Reynolds NumberDependence on the Vortex Reynolds Number
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Radial CorrectionsRadial Corrections
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Near Wall Radial ProfileNear Wall Radial Profile
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Comparison to CulickComparison to Culick’’s Profiles Profile

Swirl-driven flow: 
Liquid vortex engine 

Injection-driven flow:
Solid rocket motor 
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Motivations for Compressible Studies

Greater understanding of the flow characteristics
Verification of computational codes
Approximate solutions useful for faster convergence in 
computational models
Accurate foundation for modeling of flow field stability and 
thermal analysis



Compressible Tangential Velocity

Work in progress
Three solution methods currently being investigated

Assuming the compressibility effects in the other directions 
are so small as to be negligible
Further reduce the compressible stream function, carrying 
only the most dominant terms for an approximate solution
Solve the compressible tangential momentum equation with 
the full stream function expression

With the tangential velocity determined, the compressible 
bidirectional vortex will be fully defined



Inviscid Compressible Formulation
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Singularity with the Inviscid, Compressible Formulation
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Compressible Viscous Core Corrections
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Compressible Stream Function Correction
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Compressible vs Incompressible Velocity Results
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Future Investigations (Part 1)Future Investigations (Part 1)

Biglobal instability studyBiglobal instability study
Minimum Swirl no. Minimum Swirl no. 
Compressible BV (in progress)Compressible BV (in progress)
Compressible reactive model using the thin sheet approx.Compressible reactive model using the thin sheet approx.
Endwall and sidewall boundary layers (in progress)Endwall and sidewall boundary layers (in progress)
Nusselt number correlationNusselt number correlation
Mean flow interactions with particlesMean flow interactions with particles



Future Investigations (Part 2)Future Investigations (Part 2)

BV in conical/spherical geometry (in progress)BV in conical/spherical geometry (in progress)
Perpetual selfPerpetual self--reversing BV (fluid flywheel)reversing BV (fluid flywheel)
MultiMulti--directional solutionsdirectional solutions
Breakdown patterns (SBreakdown patterns (S--shape, Bshape, B--shape, etc)shape, etc)
Dynamic evolution of wall temperatures by CFDDynamic evolution of wall temperatures by CFD
Engine performance characteristics (thrust, Engine performance characteristics (thrust, IIspsp) using CFD (in progress)) using CFD (in progress)
Resistance of the BV to acoustic oscillationsResistance of the BV to acoustic oscillations
Effect of roll torques on nozzle and flight motionEffect of roll torques on nozzle and flight motion


